Prevention of traumatic brain injury-induced neuron death by intranasal delivery of nicotinamide adenine dinucleotide.

نویسندگان

  • Seok Joon Won
  • Bo Young Choi
  • Byung Hoon Yoo
  • Min Sohn
  • Weihai Ying
  • Raymond A Swanson
  • Sang Won Suh
چکیده

Traumatic brain injury (TBI) is one of the most devastating injuries experienced by military personnel, as well as the general population, and can result in acute and chronic complications such as cognitive impairments. Since there are currently no effective tools for the treatment of TBI, it is of great importance to determine the mechanisms of neuronal death that characterize this insult. Several studies have indicated that TBI-induced neuronal death arises in part due to excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), which results in nicotinamide adenine dinucleotide (NAD⁺) depletion and subsequent energy failure. In this study, we investigated whether intranasal administration of NAD⁺ could reduce neuronal death after TBI. Rats were subjected to a weight-drop TBI model that induces cortical and hippocampal neuronal death. The intranasal administration of NAD⁺ (20 mg/kg) immediately after TBI protected neurons in CA1, CA3, and dentate gyrus of the hippocampus, but not in the cortex. In addition, delayed microglial activation normally seen after TBI was reduced by NAD⁺ treatment at 7 days after insult. Neuronal superoxide production and PARP-1 accumulation after TBI were not inhibited by NAD⁺ treatment, indicating that reactive oxygen species (ROS) production and PARP-1 activation are events that occur upstream of NAD⁺ depletion. This study suggests that intranasal delivery of NAD⁺ represents a novel, inexpensive, and non-toxic intervention for preventing TBI-induced neuronal death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifying of Participation of Nitric Oxide in Morphine Place Conditioning in the Rat Medial Septum Using Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase (NADPH-d)

Background: Role of nitric oxide (NO) in morphine-induced conditioned place preference (CPP) has already been proposed in the rat medial septum (MS), but no molecular evidence has been provided to clear this fact. Methods: Effects of intraseptal injections of L-arginine and/or NG-nitro-L-arginine methyl ester (L-NAME) on morphine place conditioning in Wistar rats were examined. Morphine (2.5-7....

متن کامل

Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia.

Excessive poly(ADP-ribose) polymerase-1 (PARP-1) activation plays a significant role in ischemic brain damage. Increasing evidence has supported the hypothesis that PARP-1 induces cell death by depleting intracellular NAD+. Based on our in vitro finding that NAD+ treatment can abolish PARP-1-mediated cell death, we hypothesized that NAD+ administration may decrease ischemic brain injury. In thi...

متن کامل

P7C3 neuroprotective chemicals block axonal degeneration and preserve function after traumatic brain injury.

The P7C3 class of neuroprotective aminopropyl carbazoles has been shown to block neuronal cell death in models of neurodegeneration. We now show that P7C3 molecules additionally preserve axonal integrity after injury, before neuronal cell death occurs, in a rodent model of blast-mediated traumatic brain injury (TBI). This protective quality may be linked to the ability of P7C3 molecules to acti...

متن کامل

The nose may help the brain: intranasal drug delivery for treating neurological diseases

While enormous progress has been made regarding our understanding of the pathogenic mechanisms of neurological diseases, there are only a small number of effective drugs for treating these illnesses. A key obstacle for developing effective drugs for treating neurological diseases is the blockage of drug entrance into the CNS by the BBB [1]. Less than 2% of all small-molecule drugs, and virtuall...

متن کامل

Nicotinamide Phosphoribosyltransferase May Be Involved in Age-Related Brain Diseases

Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme for nicotinamide adenine dinucleotide (NAD) biosynthesis, and can be found either intracellularly (iNAMPT) or extracellularly (eNAMPT). Studies have shown that both iNAMPT and eNAMPT are implicated in aging and age-related diseases/disorders in the peripheral system. However, their functional roles in aged brain remain to be establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2012